

ASSESSMENT REPORT
RIPPLE LABS INC.

SIDE CHAINS SECURITY ASSESSMENT 2023 — EVM
JULY 24, 2023

 2023/07/24 2

This engagement was performed in accordance with the Statement of Work, and the procedures were limited

to those described in that agreement. The findings and recommendations resulting from the assessment are

provided in the attached report. Given the time-boxed scope of this assessment and its reliance on client-

provided information, the findings in this report should not be taken as a comprehensive listing of all security

issues.

This report is intended solely for the information and use of Ripple Labs Inc.

Bishop Fox Contact Information:

+1 (480) 621-8967

contact@bishopfox.com

8240 S. Kyrene Road

Suite A-113

Tempe, AZ 85284

mailto:contact@bishopfox.com

 2023/07/24 3

TABLE OF CONTENTS

Table of Contents .. 3

Executive Report ... 4

Project Overview ... 4

Summary of Findings ... 4

Assessment Report ... 6

Hybrid Application Assessment .. 6

Arbitrary Code Execution .. 6

Arbitrary Command Injection ... 9

Vulnerable Software .. 12

Insecure Network Transmission ... 14

Insecure SSL/TLS Configuration.. 16

Insecure Software Configuration ... 18

Missing Security Headers .. 20

Outdated Software ... 22

Sensitive Information Disclosure ... 24

Weak Content Security Policy (CSP) ... 27

Weak Cryptography ... 30

Appendix A — Measurement Scales ... 32

Finding Severity .. 32

Appendix B — Test Plan ... 33

 2023/07/24 4

EXECUTIVE REPORT

Project Overview

Ripple Labs Inc. engaged Bishop Fox to assess the security of the

Ripple EVM side chain feature. The following report details the

findings identified during the course of the engagement, which

started on June 13, 2023.

Goals

• Identify vulnerabilities on systems and services exposed on

the internet-facing services related to the EVM side chain

bridging infrastructure

• Assess the overall security of the EVM bridging protocol,

witness server, and RPC interfaces

• Enumerate any weaknesses or potential hardening

opportunities within the EVM bridging feature whose

remediation could improve its security posture

FINDING COUNTS

3 Medium

8 Low

11 Total findings

SCOPE

EVM bridge packages

EVM bridge

infrastructure

DATES

06/13/2023

Kickoff

06/19/2023 –

07/13/2023

Active testing

07/24/2023

Report delivery

Summary of Findings

The assessment team performed a security assessment of the EVM bridging feature,

including the xrp-evm repository that implemented the EVM bridging protocol and the

corresponding witness server. During this assessment, the team determined that the

RPC networking interfaces were well-protected against injection-based attacks and

identified no core issues with the bridging functionality.

In contrast, the assessment team did discover multiple issues related to the applications’

build processes, such as the use of outdated dependencies. While such issues were not

directly exploited during the assessment, they reduce the security posture of the affected

applications and their build environments. The team also identified unsafe command

and code execution patterns through which certain functions unsafely passed arguments

to a command line interface or code execution engine. While the team did not identify

any exploitation paths for these unsafe patterns, any additional functionality that uses

 2023/07/24 5

these features or changes to the application through future development may permit an

attacker to compromise the integrity of witness servers.

Additionally, the team identified multiple issues with lesser impact that did not present

an immediate risk to the EVM bridging functionality, including minor cryptographic issues

and minor issues related to deployed infrastructure that did not follow best practices.

Overall, despite attempting multiple potential attack paths against the EVM bridge, the

team did not identify mechanisms for a remote attacker to violate the operational

integrity of the EVM bridge applications or forge bridging transactions.

RECOMMENDATIONS

Update Software Dependencies — Remove outdated dependencies from affected

packages and integrate dependency update checks into the CI/CD pipeline.

Remove Unsafe Execution Patterns — Avoid injecting arbitrary data into command

and code execution functionality.

 2023/07/24 6

ASSESSMENT REPORT

Hybrid Application Assessment

The assessment team performed a hybrid application assessment with the following target

in scope:

• EVM packages (https://github.com/Peersyst/xrp-evm)

Identified Issues

1 ARBITRARY CODE EXECUTION MEDIUM

Definition

Arbitrary code execution occurs when attackers execute code on a target machine within

the same context as a compromised process. As a result, the machine cannot

differentiate between trusted and untrusted code and will execute commands under the

privileges of the original process.

Details

The assessment team identified one instance of arbitrary code execution in the

IsValidXAddress function within the bridge-witness package. While the assessment

team did not identify a mechanism to exploit this vulnerability, if a vector for passing

arbitrary strings to this function were identified, an attacker could potentially execute

arbitrary JavaScript on the bridge witness server within the v8go sandbox.

To identify the issue, the team reviewed the IsValidXAddress code and determined

that it leveraged the v8go library’s Context.RunScript() function to execute code

within the V8 sandbox:

func (xrplJs *XrplJs) IsValidXAddress(account string) bool {

id := "a" + strconv.FormatUint(consumeId(), 10)

_, err := xrplJs.ctx.RunScript("let "+id+" = xrpl.isValidXAddress('"+account+"')",

 "call-isValidXAddress.js")

…omitted for brevity…

}

FIGURE 1 - IsValidXAddress function calling RunScript on string input

In the function above, the account input was insecurely concatenated onto the

JavaScript code passed into the v8go engine. The team developed an exploit that, if

 2023/07/24 7

injectable, could overwrite the isValidXAddress function within an initialized v8go

instance to always return true:

func main() {

engine := NewXrplJs()

overwrite :=

engine.IsValidXAddress("X7YDPC4TJvjVxLc4QNDgCfaAocYVbWBE8jzpaKPZBy8mKDf');

xrpl.isValidXAddress = function(x) { return true; } //")

println("Response for `X7YDPC4TJvjVxLc4QNDgCfaAocYVbWBE8jzpaKPZBy8mKDf` address:")

println(overwrite)

println("Response for `notanaddress` address:")

exploited := engine.IsValidXAddress("notanaddress")

println(exploited)

}

FIGURE 2 - Injecting additional JavaScript into V8 to override isValidAddress function

In the above proof-of-concept (PoC), the first call to the Golang IsValidXAddress

function passed a valid account to isValidXAddress that terminated the JavaScript

statement by including [');] at the end of the address. The payload then overwrote the

xrpl.isValidXAddress JavaScript function to always return true. Once run, the PoC

returned the following response:

$ go run XrplJs.go

Response for `X7YDPC4TJvjVxLc4QNDgCfaAocYVbWBE8jzpaKPZBy8mKDf` address:

true

Response for `notanaddress` address:

true

FIGURE 3 - Running PoC to overwrite v8go function

As this PoC illustrated, attackers could leverage different attack strategies to disrupt the

operation of the witness server. For example, an attacker could include an infinite loop in

their payload and potentially cause a denial-of-service (DoS) scenario.

As previously mentioned, the assessment team did not identify a direct vector that could

be used to inject arbitrary payloads into the affected function. However, if additional

features were added that used the function against data retrieved from an attacker-

controlled source, malicious users could significantly modify the intended functionality of

the witness server.

Affected Locations

Source Code

xrp-evm/packages/bridge-witness/external/xrpl.js/XrplJs.go:147

Total Instances 1

 2023/07/24 8

Recommendations

To remediate this instance of arbitrary code execution, the team recommends the

following steps:

• Build an allowlist of the namespaces and commands allowed to be executed by

the daemon, and strictly check all commands against the allowlist before

execution.

• Perform strong input validation of all user-supplied data sent to the daemon.

Additional Resources

CWE-94: Improper Control of Generation of Code (‘Code Injection’)

http://cwe.mitre.org/data/definitions/94.html

 2023/07/24 9

2 ARBITRARY COMMAND INJECTION MEDIUM

Definition

Arbitrary command injection occurs when a user passes maliciously crafted input into an

application, which then uses the unchecked data in a function that executes at the

operating system level. The system cannot differentiate between these malicious

commands and regular application commands and executes calls within the authority

context of the original application.

Details

The assessment team identified an instance of arbitrary command injection within the

cli package. The command injection vulnerability existed within a command line

application and could only be exploited by tricking end users into running the cli

application with a malicious configuration file.

To identify the issue, the assessment team reviewed the exprd function and determined

that it made an exec call with arbitrary input:

export function exrpd(arg: string, homeDir = "", dockerImage = "peersyst/xrp-evm-

client:latest", pre = ""): string {

 return exec(`${pre} docker run --rm -i -v ${homeDir}:/root/.exrpd ${dockerImage}

exrpd ${arg}`, {

 encoding: "utf8",

 stdio: "pipe",

 });

}

FIGURE 4 - exrpd function with insecure exec call

The assessment team generated the following PoC script to demonstrate how additional

commands could be injected into the function if an attacker controlled the input:

import { execSync as exec } from "child_process";

export function exrpd(arg: string, homeDir = "", dockerImage = "peersyst/xrp-evm-

client:latest", pre = ""): string {

 return exec(`${pre} docker run --rm -i -v ${homeDir}:/root/.exrpd ${dockerImage}

exrpd ${arg}`, {

 encoding: "utf8",

 stdio: "pipe",

 });

}

// modified to remove calls to class properties

function parseHexAddressToBech32Poc(address: string): string {

 const { formats } = JSON.parse(exrpd(`keys parse ${address.replace("0x", "")} --

output json`));

 return formats[0];

}

function proofOfConcept1() {

 2023/07/24 10

 console.log("Running poc1...")

 let payload = "somecommand ; echo 'poc1.txt created via exrpd injection' >

poc1.txt; #"

 console.log("Payload:")

 console.log(payload)

 exrpd(payload, "", "hello-world")

}

function proofOfConcept2() {

 console.log("Running poc2...")

 let payload = "89B4dE433558cbEeA95cD57bfCA4357A4FEA4Ace --output json 2>/dev/null;

echo 'poc2.txt created via parseHexAddressToBech32Poc' > poc2.txt; echo

'{\"formats\":[0]}'; #";

 console.log("Payload:")

 console.log(payload)

 \parseHexAddressToBech32Poc(payload);

}

proofOfConcept1();

console.log("")

proofOfConcept2();

FIGURE 5 - PoC script to inject additional commands into function

The assessment team ran the PoC script and observed the following output:

$ ts-node poc.ts && cat poc1.txt poc2.txt

Running poc1...

Payload:

somecommand ; echo 'poc1.txt created via exrpd injection' > poc1.txt; #

Running poc2...

Payload:

89B4dE433558cbEeA95cD57bfCA4357A4FEA4Ace --output json 2>/dev/null; echo 'poc2.txt

created via parseHexAddressToBech32Poc' > poc2.txt; echo '{"formats":[0]}'; #

poc1.txt created via exrpd injection

poc2.txt created via parseHexAddressToBech32Poc

FIGURE 6 - PoC script demonstrating ability to inject arbitrary commands

The assessment team did not identify any external code paths into this functionality that

an attacker could directly exploit to inject code into a victim’s system. However, an

attacker could exploit this vulnerability to compromise their target’s system by coercing

them into running the application against a maliciously crafted configuration file.

Affected Locations

Affected File

packages/cli/src/util/exrpd.ts:3

Total Instances 1

 2023/07/24 11

Recommendations

To mitigate the risk of arbitrary command injection, the assessment team recommends

the following actions:

• Avoid arbitrarily building commands from strings and passing them to a shell

interface.

• Perform strict input sanitization and validation against any values passed to the

command line.

• Alternatively, do not leverage the command line interface (CLI) to execute Docker

commands and instead utilize an HTTP interface that cleanly passes the

command to a Docker container.

Additional Resources

CWE-94: Improper Control of Generation of Code (‘Code Injection’)

http://cwe.mitre.org/data/definitions/94.html

OWASP Command Injection

https://owasp.org/www-community/attacks/Command_Injection

OWASP Cheat Sheet Series - Input Validation

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

 2023/07/24 12

3 VULNERABLE SOFTWARE MEDIUM

Definition

Vulnerable software exists when an application has not been updated with the latest

security patches. These insecure versions of software can contain issues (e.g., arbitrary

remote code execution or SQL injection) that could allow a malicious user to gain

elevated access to the application itself or its supporting infrastructure.

Details

When analyzing the xrp-evm repository’s use and integration of third-party

dependencies, the team identified several dependencies and libraries that included

potential security issues. When an application uses unpatched third-party libraries with

known vulnerabilities or missing security updates, vulnerabilities or security weaknesses

may be introduced into the application.

For example, the assessment team reviewed the package.json files leveraged by the

xrp-evm build processes and found multiple dependencies with known security

concerns:

$ npm audit

npm audit report

parse-path <5.0.0

Severity: high

Authorization Bypass in parse-path - https://github.com/advisories/GHSA-3j8f-xvm3-

ffx4

fix available via `npm audit fix --force`

Will install lerna@5.6.2, which is outside the stated dependency range

…omitted for brevity…

FIGURE 7 - Running npm-audit against xrp-evm’s package.json

Additionally, the team also identified potential issues in Golang dependencies present in

the xrp-evm repository. For example, the bridge-witness package leveraged a

vulnerable version of v8go that suffered from multiple type-confusion issues.

Finally, the team also identified outdated and potentially vulnerable software within

multiple referenced Docker container builds in the xrp-evm repository, as shown below:

$ cat packages/cli/Dockerfile

FROM node:18.15.0 as install

ARG NPM_TOKEN

ENV NPM_TOKEN ${NPM_TOKEN}

FIGURE 8 - Example reference to node 18.15.0 within cli package

 2023/07/24 13

The team identified multiple uses of outdated versions of node and alpine Docker

images that lacked up to date security fixes within the xrp-evm repository.

Affected Locations

Dependencies

For a full list of affected dependencies, please see the attached spreadsheet.

Total Instances 378

Recommendations

To mitigate the risk of vulnerable software, the assessment team recommends the

following action:

• Update the affected packages to their latest versions.

Strategic Considerations

• Integrate dependency update scans into the CI/CD pipeline and block merges

when issues are identified.

• Regularly review security vulnerability lists and vendor advisory pages related to

applications used within the environment. Apply all security patches released for

these systems in a timely manner.

• Establish an expedited process for applying updates to critical vulnerabilities.

Additional Resources

OWASP Top Ten 2021 - Vulnerable and Outdated Components

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

CWE-937: Using Components with Known Vulnerabilities

https://cwe.mitre.org/data/definitions/937.html

List of Known v8 Vulnerabilities

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=V8+Chrome

https://cwe.mitre.org/data/definitions/937.html

 2023/07/24 14

4 INSECURE NETWORK TRANSMISSION LOW

Definition

Insecure network transmission occurs when sensitive information is sent over a network

without adequate protection. When data is sent across insecure communication

channels, it may be susceptible to interception and modification by third parties,

resulting in unauthorized information disclosure.

Details

The assessment team discovered that two EVM sidechain endpoints did not strictly

enforce the use of HTTPS. Neither application contained sensitive customer information.

However, the availability of the cleartext HTTP service could allow attackers to perform

Man-in-the-Middle (MitM) attacks against users, through which users could be coerced

into sending tokens to the attacker’s wallet.

The team demonstrated this issue by directly browsing the HTTP version of the

application and determining that the server did not return an automatic redirect to the

secure HTTPS version, as shown below in the HTTP 200 response to a request sent

without TLS encryption:

Request
GET / HTTP/1.1

Host: witness-evm-sidechain.peersyst.tech

Cache-Control: max-age=0

…omitted for brevity…

Response
HTTP/1.1 200 OK

Date: Fri, 14 Jul 2023 01:24:49 GMT

Content-Type: text/html; charset=utf-8

Connection: close

…omitted for brevity…

The lack of HTTPS could allow an attacker to inject a phishing site into a user’s

application, then trick the user into sending funds to the attacker’s wallet.

Affected Locations

URLs

• http://witness-evm-sidechain.peersyst.tech

• http://evm-poa-sidechain.peersyst.tech/

 2023/07/24 15

Total Instances 2

Recommendations

To mitigate the threat of data interception and modification, the assessment team

recommends the following step:

• Enforce the use of TLS for all communications that transmit sensitive information

(including data such as cookies and authentication credentials).

Strategic Consideration

• When switching entirely to HTTPS, consider enabling HTTP Strict Transport

Security (HSTS).

Additional Resources

OWASP Cheat Sheet Series - Transport Layer Protection

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html

CWE-319: Cleartext Transmission of Sensitive Information

https://cwe.mitre.org/data/definitions/319.html

Wikipedia - HTTP Strict Transport Security

http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

 2023/07/24 16

5 INSECURE SSL/TLS CONFIGURATION LOW

Definition

The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols allow secure

communication between a client and a server. Known vulnerabilities introduced by

insecure SSL/TLS configurations can potentially result in a successful Man-in-the-Middle

(MitM) attack.

Details

The assessment team observed that multiple side chain endpoints supported the use of

insecure protocols TLS 1.0 and TLS 1.1, which are subject to known vulnerabilities.

Additionally, the team discovered insecure cipher suites on the affected endpoints.

These insecure configurations could allow an attacker to access cleartext

communications between the client and the server.

To confirm this issue, the assessment team leveraged the utility testssl.sh against the

affected endpoints, with one result as an example shown below:

$./testssl.sh witness-evm-sidechain.peersyst.tech

…omitted for brevity…

 Testing protocols via sockets except NPN+ALPN

SSLv2 not offered (OK)

SSLv3 not offered (OK)

TLS 1 offered (deprecated)

TLS 1.1 offered (deprecated)

TLS 1.2 offered (OK)

TLS 1.3 offered (OK): final

NPN/SPDY h2, http/1.1 (advertised)

ALPN/HTTP2 h2, http/1.1 (offered)

Testing cipher categories

NULL ciphers (no encryption) not offered (OK)

Anonymous NULL Ciphers (no authentication) not offered (OK)

Export ciphers (w/o ADH+NULL) not offered (OK)

LOW: 64 Bit + DES, RC[2,4], MD5 (w/o export) not offered (OK)

Triple DES Ciphers / IDEA offered

Obsoleted CBC ciphers (AES, ARIA etc.) offered

Strong encryption (AEAD ciphers) with no FS offered (OK)

Forward Secrecy strong encryption (AEAD ciphers) offered (OK)

…omitted for brevity…

FIGURE 9 - Sample output from testssl.sh enumerating TLS configuration issues

These vulnerable configurations could allow attackers to threaten the confidentiality of

network activity, access its cleartext, and steal sensitive information.

 2023/07/24 17

Affected Locations

URLs

• https://witness-evm-sidechain.peersyst.tech

• https://evm-sidechain.xrpl.org

• https://evm-sidechain.peersyst.tech

• https://evm-poa-sidechain.peersyst.tech

Total Instances 4

Recommendations

The assessment team recommends the following methods to properly deploy SSL/TLS

services:

• Disable TLS 1.0 and TLS 1.1 support in vulnerable services.

• Avoid the following insecure ciphers and algorithms: 3DES, SHA1, CBC.

Additional Resources

SSL/TLS Vulnerability Cheat Sheet: Certificate issues

https://github.com/IBM/tls-vuln-cheatsheet#certificate-issues

Testing TLS/SSL encryption

https://testssl.sh

SSL and TLS Deployment Best Practices

https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

 2023/07/24 18

6 INSECURE SOFTWARE CONFIGURATION LOW

Definition

Insecure software configuration occurs when applications and infrastructure are

configured in a manner that is inconsistent with industry best practices. These

misconfigurations could allow unauthorized access to affected systems, the disclosure of

sensitive information, and the exposure of critical application logs

Details

The assessment team identified insecure software configurations in the xrp-evm code

repository. These configurations provide opportunities for hardening the xrp-evm

applications within the repository.

MISSING NODEJS PRODUCTION SETTING

The team identified two packages, bridge-client-frontend and bridge-client-

backend, that contained Docker builds that did not set the NODE_ENV environment

variable to production. To identify the issue, the team reviewed the Dockerfile

configurations within these packages and discovered that the NODE_ENV setting had

been commented out, as shown below:

FROM node:16.13.0 AS build

#ENV NODE_ENV=production

WORKDIR /app

COPY ["package.json", "yarn.lock", ".npmrc", "./"]

RUN yarn

FIGURE 10 – bridge-client-backend Dockerfile with NODE_ENV not set to production

Setting NODE_ENV to production provides multiple security benefits due to automatic

hardening. For example, when NODE_ENV is set to production, node will minimize

logging and avoid generating verbose error messages. Additionally, setting NODE_ENV to

production also improves performance due to increased caching.

SERVER VERSION LEAKAGE

The assessment team determined that the witness-evm-sidechain.peersyst.tech

endpoint returned default error messages that contained the server’s version number.

To identify the issue, the team sent the following request and reviewed the information

returned in the HTTP 403 response:

Request
GET /static/ HTTP/2

Host: witness-evm-sidechain.peersyst.tech

 2023/07/24 19

…omitted for brevity…

Response
HTTP/2 403 Forbidden

Date: Fri, 14 Jul 2023 16:38:13 GMT

Content-Type: text/html

…omitted for brevity…

<html>

<head><title>403 Forbidden</title></head>

<body>

<center><h1>403 Forbidden</h1></center>

<hr><center>nginx/1.25.1</center>

</body>

</html>

…omitted for brevity…

While the issue was not directly exploitable, the leakage of the server’s version could

provide an attacker with useful information when constructing an exploit against the

service.

Affected Locations

Locations

• packages/bridge-client-frontend/Dockerfile:3

• packages/bridge-client-backend/Dockerfile:2

• https://witness-evm-sidechain.peersyst.tech

Total Instances 3

Recommendations

To prevent vulnerabilities introduced by insecure software configuration, the assessment

team recommends the following steps:

• Ensure NODE_ENV is set to production when deploying an application.

• Disable all default error messages when deploying a reverse proxy and ensure

server versions are not being disclosed to the public.

Additional Resources

Node.js, the difference between development and production

https://nodejs.dev/en/learn/nodejs-the-difference-between-development-and-production/

How To Configure Nginx to Use Custom Error Pages on Ubuntu 22.04

https://www.digitalocean.com/community/tutorials/how-to-configure-nginx-to-use-custom-error-

pages-on-ubuntu-22-04

 2023/07/24 20

7 MISSING SECURITY HEADERS LOW

Definition

HTTP security headers activate features in modern web browsers that help protect users

against cross-site scripting (XSS), UI redress, and Man-in-the-Middle (MitM) attacks.

Details

The assessment team discovered that multiple EVM side chain endpoints omitted

multiple modern security header directives that support additional security features in

browsers. The lack of HTTP security headers is a frequently overlooked opportunity for

additional protection against client-side and MitM attacks.

Descriptions of the missing security headers are provided below:

Header Name Description

Strict-Transport-

Security
This header enforces HTTP Strict Transport Security

(HSTS), which instructs browsers to communicate with

the application over HTTPS and prevents any

communications from being sent over HTTP.

X-Frame-Options This header restricts which domains can render the

resource within a frame, iframe, or object tag, which

provides protection against UI redress attacks. The

application can deny this ability entirely, restrict it to the

same origin as the embedding page, or specify a safelist

of allowed origins. While this header is considered

deprecated, it is still widely supported by browsers.

X-Content-Type-

Options
Setting the value of this header to nosniff prevents

Internet Explorer and Google Chrome from attempting

to determine the content type by inspecting the

response. This helps protect users from untrusted

content being rendered as HTML or other content types.

FIGURE 11 - Missing security headers

Enabling these headers provides browsers with additional information regarding the

security constraints that should be applied to the site. For backward compatibility

reasons, browsers do not always implement these features automatically; they must be

explicitly enabled by setting and including the HTTP security headers.

 2023/07/24 21

Affected Locations

URLs

• https://witness-evm-sidechain.peersyst.tech

• https://custom.xrpl.org

• https://evm-poa-sidechain.peersyst.tech

• https://evm-sidechain.xrpl.org

• https://evm-sidechain.peersyst.tech

Total Instances 5

Recommendations

The assessment team recommends the following changes to leverage the security

capabilities of modern browsers:

• Enable the Strict-Transport-Security header and set the max-age directive

to a value greater than zero. If possible, HSTS should be enabled for subdomains

using the includeSubdomains directive. It is best to start with a small value for

the max-age directive, such as 86400 seconds, or one day, to ensure that any

issues can be resolved before enabling HSTS for a longer period. If testing and

user acceptance is successful, the value for the max-age directive should be

gradually increased to one year, or 31536000 seconds.

• Enable the X-Content-Type-Options header and set it to no-sniff.

• Enable the X-Frame-Options header and set it to either DENY or SAMEORIGIN.

Additional Resources

OWASP Secure Headers Project

https://owasp.org/www-project-secure-headers

Strict-Transport-Security

https://developer.mozilla.org/en-US/docs/Web/Security/HTTP_strict_transport_security

X-Frame-Options

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

X-Content-Type-Options

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

CWE-693: Protection Mechanism Failure

https://cwe.mitre.org/data/definitions/693.html

 2023/07/24 22

8 OUTDATED SOFTWARE LOW

Definition

Outdated dependencies exist when an application has not been updated with the latest

patches or is using an outdated or deprecated version of a third-party library. Software

that has not been kept up to date could prove more difficult to upgrade at pace when a

vulnerability is made public.

Details

The assessment team reviewed the dependencies of the xrp-evm repository, including

the Golang, Docker, and JavaScript dependencies leveraged by the multiple packages

within the repository, and found instances of outdated dependencies in the repository.

For example, the following excerpt from the go.mod configuration within the bridge-

witness package shows the inclusion of outdated versions of AWS libraries:

module peersyst/bridge-witness-go

go 1.19

require (

 github.com/aws/aws-sdk-go-v2/config v1.1.1

 github.com/aws/aws-sdk-go-v2/service/kms v1.20.1

 github.com/ethereum/go-ethereum v1.10.26

 github.com/gorilla/websocket v1.4.2

 …omitted for brevity…

FIGURE 12 - Golang dependency configuration with outdated libraries

As shown above, the package relied on the v1.1.1 version of the aws-sdk-go-

v2/config and v1.20.1 version of aws-sdk-go-v2/service/kms. However, both

packages have more recent versions available that were not integrated into the bridge-

witness package. While the assessment team did not identify any vulnerabilities or

unpatched security updates related to the outdated packages, regularly updating

packages ensures that unidentified or unreported vulnerabilities are not introduced into

an application.

Affected Locations

Dependencies

For a full list of affected dependencies, please see the attached spreadsheet.

Total Instances 32

 2023/07/24 23

Recommendations

To mitigate the risk of outdated software, the assessment team recommends the

following actions:

• Ensure that dependencies utilized by an application are still actively supported by

upstream maintainers.

• Integrate automatic dependency updates in the CI/CD pipeline to ensure that

dependencies are continuously being patched.

Additional Resources

OWASP Top Ten 2021 - Vulnerable and Outdated Components

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

CWE-937: Using Components with Known Vulnerabilities

https://cwe.mitre.org/data/definitions/937.html

https://cwe.mitre.org/data/definitions/937.html

 2023/07/24 24

9 SENSITIVE INFORMATION DISCLOSURE LOW

Definition

Sensitive information disclosure occurs when private data is exposed to unauthorized

parties. This may include financial data, personal privacy information, health records,

proprietary information, or other important data.

Details

The assessment team discovered that the xrp-evm repository contained multiple

instances of potentially sensitive credentials within the source code. When sensitive

credentials exist in a source code repository, any user with access to that repository can

leverage those credentials to gain unauthorized access to services. Additionally, if source

code were ever made public, the credentials would continue to exist in Git history and be

available to the public.

The team determined that the repository contained terraform.tfstate and

terraform.tfstate.backup files. Terraform state files often contain sensitive files

generated when deploying infrastructure. In this case, the state files appeared to contain

tendermint private keys, as shown below:

…omitted for brevity…

{

 "module": "module.blockchain.module.prepare_network",

 "mode": "data",

 "type": "local_file",

 "name": "keys",

 "provider": "provider[\"registry.terraform.io/hashicorp/local\"]",

 "instances": [

 {

 "index_key": 0,

 "schema_version": 0,

 "attributes": {

 "content": "-----BEGIN TENDERMINT PRIVATE KEY-----\nkdf: bcrypt\nsalt:

[REDACTED]\ntype: eth_secp256k1\n\n[REDACTED]\n=1zyW\n-----END TENDERMINT PRIVATE

KEY-----\n",

 "content_base64": "[REDACTED]",

 "filename": "/Users/[REDACTED]/GIT/xrp-evm/infra/devnet/.data/validator-

0.key",

 "id": "c763c08ba63cfe51b6614ba0b72119fa02e57335"

 },

 "sensitive_attributes": []

 },

…omitted for brevity…

FIGURE 13 - Terraform state file containing multiple tendermint private keys

 2023/07/24 25

Additionally, the team identified several NPM authentication tokens embedded in the

repository. For example, the bridge-client-backend package contained a .npmrc file

with an unencrypted authentication token:

$ cat packages/bridge-client-backend/.npmrc

//registry.npmjs.org/:_authToken=npm_[REDACTED]

legacy-peer-deps=true

FIGURE 14 - Identifying unencrypted NPM authentication tokens in package

The assessment team escalated these issues and confirmed with the application team

that the NPM authentication tokens previously had read-only access to private NPM

repositories but have since been revoked.

Finally, the assessment discovered that two endpoints, evm-poa-

sidechain.peersyst.tech and evm-sidechain.peersyst.tech, appeared to

publicly leak prometheus logs, as shown below:

Request
GET /metrics HTTP/1.1

Host: evm-sidechain.peersyst.tech

…omitted for brevity…

Response
HTTP/1.1 200 OK

Date: Thu, 13 Jul 2023 22:00:45 GMT

…omitted for brevity…

TYPE phoenix_channel_receive_duration_microseconds histogram

HELP phoenix_channel_receive_duration_microseconds Phoenix channel receive handler

time in microseconds

TYPE phoenix_controller_call_duration_microseconds histogram

HELP phoenix_controller_call_duration_microseconds Whole controller pipeline

execution time in microseconds.

TYPE ecto_queue_duration_microseconds histogram

HELP ecto_queue_duration_microseconds The time spent to check the connection out

in microseconds.

ecto_queue_duration_microseconds_bucket{result="ok",le="10"} 3723604574

ecto_queue_duration_microseconds_bucket{result="ok",le="100"} 3723724517

ecto_queue_duration_microseconds_bucket{result="ok",le="1000"} 3723724525

While such logs did not appear to contain sensitive data, attackers may still find them

useful for understanding the state of the server or application.

Affected Locations

Affected Locations

• xrp-evm/infra/devnet/terraform.tfstate

• xrp-evm/infra/devnet/terraform.tfstate.backup

 2023/07/24 26

• xrp-evm/.npmrc

• xrp-evm/packages/bridge-client-backend/.npmrc

• xrp-evm/packages/bridge-client-frontend/.npmrc

• xrp-evm/packages/bridge-node/.npmrc

• xrp-evm/packages/bridge-witness/.npmrc

• xrp-evm/packages/stress-tester/.npmrc

• http://evm-sidechain.peersyst.tech/metrics

• http://evm-poa-sidechain.peersyst.tech/metrics

Total Instances 10

Recommendations

To address the issue of sensitive information disclosure, the assessment team

recommends the following remediation action:

• Remove all credential files from the affected Git repository and rotate the

credentials found in these files.

Additional Resources

CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

http://cwe.mitre.org/data/definitions/200.html

http://cwe.mitre.org/data/definitions/200.html

 2023/07/24 27

10 WEAK CONTENT SECURITY POLICY (CSP) LOW

Definition

Content Security Policy (CSP) is an HTML5 standard primarily designed to mitigate the

issue of cross-site scripting (XSS) and other content injection vulnerabilities within web

applications. Weak CSPs stem from overly permissive or ineffective content source

directives

Details

The assessment team identified many endpoints deployed to support the EVM side chain

infrastructure that either did not have a Content Security Policy (CSP) or had policies that

did not follow security best practices. An insecure or improperly configured CSP could

allow an attacker to exploit most XSS vulnerabilities in the affected applications.

The team determined that the witness-evm-sidechain.peersyst.tech,

custom.xrpl.org, and evm-poa-sidechain.peersyst.tech endpoints did not

contain a CSP in their responses. For example, when navigating to the witness-evm-

sidechain.peersyst.tech application in a browser, the following response without a

CSP was returned:

Request
GET / HTTP/2

Host: witness-evm-sidechain.peersyst.tech

…omitted for brevity…

Response
HTTP/2 200 OK

Date: Thu, 13 Jul 2023 18:39:29 GMT

Content-Type: text/html

Last-Modified: Tue, 27 Jun 2023 13:27:19 GMT

Cf-Cache-Status: DYNAMIC

Report-To:

{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v3?s=oPD4AyhKdXIvaa%2B

PY%2BR8MLgGdgf4VT1gbj%2FiWIMuCUw8MIBoOduI0V3AGlDVkylHlU5lYYIgl0pEoqe4EMlyPvIV052YddB

HbEyaYk8AB52uHMYV3eWx%2Fo29hoDclM2WEZ%2BpeZyuqF9RlHEG%2BmH4VEREblHyaQ%3D%3D"}],"grou

p":"cf-nel","max_age":604800}

Nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}

Server: cloudflare

Cf-Ray: 7e63a61fef692e73-DFW

Alt-Svc: h3=":443"; ma=86400

<!doctype html>

<html lang="en">

…omitted for brevity…

 2023/07/24 28

Additionally, although the evm-sidechain.xrpl.org and evm-

sidechain.peersyst.tech endpoints implemented a CSP, the assessment team

observed that the policies that did not conform to best practices by including a script-

src with a host allowlist and omitting an object-src directive, as shown below:

Request
GET / HTTP/2

Host: evm-poa-sidechain.peersyst.tech

…omitted for brevity…

Response
HTTP/2 200 OK

…omitted for brevity…

Content-Security-Policy: connect-src 'self' ws://evm-poa-sidechain.peersyst.tech

wss://evm-poa-sidechain.peersyst.tech wss://*.bridge.walletconnect.org/

https://request-global.czilladx.com/

https://raw.githubusercontent.com/trustwallet/assets/

https://registry.walletconnect.org/data/wallets.json https://*.poa.network;

default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'

https://coinzillatag.com https://www.google.com https://www.gstatic.com;

style-src 'self' 'unsafe-inline' 'unsafe-eval' https://fonts.googleapis.com;

img-src 'self' * data:; media-src 'self' * data:; font-src 'self'

'unsafe-inline' 'unsafe-eval' https://fonts.gstatic.com data:; frame-src

'self' 'unsafe-inline' 'unsafe-eval' https://request-global.czilladx.com/

https://www.google.com;

…omitted for brevity…

<!DOCTYPE html>

<html lang="en-US">

…omitted for brevity…

When possible, it is best practice to set the script-src parameter to a restricted

location such as strict-dynamic with nonces and script hashes as well as without

unsafe-inline or unsafe-eval. In this case, the coinzillatag.com domain pointed

to an advertising platform integrated into the upstream version of the block explorer.

The coinzillatag.com and request-global.czilladx.com domains should be

omitted from the xrp-evm version to reduce the likelihood of malware being injected via

an advertisement campaign. Additionally, setting object-src to explicit values such as

self or none increases the security posture of the application.

Affected Locations

URLs

• https://witness-evm-sidechain.peersyst.tech

• https://custom.xrpl.org

• https://evm-poa-sidechain.peersyst.tech

• https://evm-sidechain.xrpl.org

• https://evm-sidechain.peersyst.tech

 2023/07/24 29

Total Instances 5

Recommendations

To mitigate a weak CSP, the assessment team recommends the following actions:

• Never allow unsafe-inline or unsafe-eval for active content such as

default-src, script-src, style-src, or object-src.

• Avoid the use of wildcards [*] within any content sources.

• Avoid hosting user-supplied files on origins allowed by active content directives

such as script-src.

• If an application does not use a content source, explicitly set corresponding CSP

directives to none.

Additional Resources

HTML5 Rocks - An Introduction to Content Security Policy

http://www.html5rocks.com/en/tutorials/security/content-security-policy/

W3C - Content Security Policy

https://w3c.github.io/webappsec-csp/

OWASP Cheat Sheet Series - Content Security Policy

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html

CWE-1021: Improper Restriction of Rendered UI Layers or Frames

https://cwe.mitre.org/data/definitions/1021.html

 2023/07/24 30

11 WEAK CRYPTOGRAPHY LOW

Definition

Weak cryptography occurs when a weakness in an implemented cryptographic routine

or function undermines the security of the encrypted data. The severity of the issue can

range from theoretical weaknesses to weaknesses that allow an attacker to fully recover

cleartext data without cryptographic keys.

Details

The team discovered that the cli package contained a contract deployment that did not

provide the saltNonce with sufficient entropy. Due to the risk of a nonce collision, if a

user attempted to generate many contracts with the same configuration, the package

would not generate the intended number of contracts.

To identify the issue, the team analyzed the use of deployeSafe within the

EvmBridgeChainProvider.ts file, as shown below:

const safe: Safe = await safeFactory.deploySafe({

 safeAccountConfig: {

 threshold: 1,

 owners: isSignerWitness ? witnesses : [...witnesses, signer.address],

 },

 saltNonce: BigNumber.from(crypto.randomInt(1_000_000)).toString(),

 options: {

 gasLimit: 3_000_000,

 },

});

FIGURE 15 - Call to deploySafe with insufficient entropy for saltNonce

According to Ripple’s safe-global documentation, the saltNonce should have 256

bits of entropy. However, due to the restrictions imposed when generating the nonce via

randomInt, the generated saltNonce only had 20 bits of entropy. The assessment

team escalated this issue and determined that although a collision would result in

unintended behavior and the generation of fewer contracts than specified, all generated

contracts would still be controlled by the end user.

The assessment team also identified the use of weak algorithms to verify the integrity of

NPM modules. To identify the issue, the teams reviewed the package-lock.json and

yarn.lock files within the xrp-evm repository and determined that some modules

leveraged SHA1 for integrity checks:

 2023/07/24 31

THIS IS AN AUTOGENERATED FILE. DO NOT EDIT THIS FILE DIRECTLY.

yarn lockfile v1

…omitted for brevity…

set-blocking@^2.0.0:

 version "2.0.0"

 resolved "https://registry.npmjs.org/set-blocking/-/set-blocking-2.0.0.tgz"

 integrity sha1-BF+XgtARrppoA93TgrJDkrPYkPc=

…omitted for brevity…

FIGURE 16 - Use of SHA1 within dependency bridge-contracts lock file

When weak algorithms are used to verify the integrity of files or packages, an attacker

may bypass integrity checks and replace such files with malicious payloads.

Affected Locations

File Paths

• packages/cli/src/bridge/create/EvmBridgeChainProvider.ts:95-104

• packages/explorer/apps/block_scout_web/assets/package-lock.json

• packages/explorer/apps/explorer/package-lock.json

• packages/blockchain/vue/package-lock.json

• packages/bridge-contracts/yarn.lock

• packages/bridge-client-backend/yarn.lock

Total Instances 6

Recommendations

To properly leverage cryptography in an application, the assessment team recommends

the following actions:

• Ensure that nonce values are properly typed and have sufficient capacity.

• Review algorithms utilized by NPM to verify the integrity of packages.

Additional Resources

CWE-326: Inadequate Encryption Strength

https://cwe.mitre.org/data/definitions/326.html

CWE-327: Use of a Broken or Risky Cryptographic Algorithm

https://cwe.mitre.org/data/definitions/327.html

 2023/07/24 32

APPENDIX A — MEASUREMENT SCALES

Finding Severity

Bishop Fox determines severity ratings using in-house expertise and industry-standard

rating methodologies such as the Open Web Application Security Project (OWASP) and the

Common Vulnerability Scoring System (CVSS).

The severity of each finding in this report was determined independently of the severity of

other findings. Vulnerabilities assigned a higher severity have more significant technical

and business impact and achieve that impact through fewer dependencies on other flaws.

Critical Vulnerability is an otherwise high-severity issue with additional security

implications that could lead to exceptional business impact. Findings are marked

as critical severity to communicate an exigent need for immediate remediation.

Examples include threats to human safety, permanent loss or compromise of

business-critical data, and evidence of prior compromise.

High Vulnerability introduces significant technical risk to the system that is not

contingent on other issues being present to exploit. Examples include creating a

breach in the confidentiality or integrity of sensitive business data, customer

information, or administrative and user accounts.

Medium Vulnerability does not in isolation lead directly to the exposure of sensitive

business data. However, it can be leveraged in conjunction with another issue to

expose business risk. Examples include insecurely storing user credentials,

transmitting sensitive data unencrypted, and improper network segmentation.

Low Vulnerability may result in limited risk or require the presence of multiple

additional vulnerabilities to become exploitable. Examples include overly

verbose error messages, insecure TLS configurations, and detailed banner

information disclosure.

Informational Finding does not have a direct security impact but represents an opportunity to

add an additional layer of security, is a deviation from best practices, or is a

security-relevant observation that may lead to exploitable vulnerabilities in the

future. Examples include vulnerable yet unused source code and missing HTTP

security headers.

 2023/07/24 33

APPENDIX B — TEST PLAN

The following section contains the test cases completed for each methodology in scope.

HAA METHODOLOGY

COMPLETED TEST CASES

TEST CASE DESCRIPTION

Conduct dynamic testing

for authentication

vulnerabilities

Attempt to misidentify or overwrite existing users through

the user registration, password reset, and login features

within the application.

Perform dynamic testing

for signature and

authentication code

validation issues

Attempt to alter or forge signed data that the application

trusts as genuine.

Perform dynamic testing

for function-level

authorization controls

Attempt to perform actions or functions with a user or role

that should be restricted from those actions and functions.

Conduct dynamic testing

for mass assignment

Attempt to find mass assignment vulnerabilities.

Perform dynamic testing

for directory traversal

Attempt to manipulate file paths so that they refer to files

that are not intended to be accessed.

Conduct dynamic testing

for resource-based

authorization controls

Attempt to access resources that a user should be restricted

from accessing.

Perform dynamic testing

for code injection

Attempt to provide malicious input to code being

constructed with user-provided content in order to cause the

interpreter to execute the provided code.

Perform dynamic testing

for command injection

Attempt to edit the contents of command-line calls using

special characters inside user-provided parameters within

the construction of the command.

Perform dynamic testing

for the insecure

Locate places where the system sends sensitive data without

proper safeguards.

 2023/07/24 34

TEST CASE DESCRIPTION

transmission of sensitive

data

Conduct dynamic testing

for the insecure handling

of sensitive data

Attempt to find places where the system mishandles

sensitive data, either by sending it to users that should not

have that data or by storing it insecurely.

Perform dynamic testing

for weak symmetric

encryption

Attempt to find issues with symmetric encryption

implementation that may cause sensitive data to be

disclosed.

Review dependency

confusion vulnerabilities

Review application dependencies for potential exploitation

through typosquatting or private vs. public repository

sourcing.

Perform dynamic testing

for file-handling

vulnerabilities

Locate any files being mishandled in a manner that allows

interaction with the server’s filesystem or command

execution on the server.

Perform dynamic testing

for uncommon injection

flaws

Attempt to find XML injection, LDAP injection, NoSQL

injection, or expression language injection.

Perform NoSQL injections Provide malicious input to NoSQL-based queries to perform

unintended actions on a NoSQL database or to execute

malicious code and unvalidated input within the application

itself.

Conduct dynamic testing

for insecure file upload

Determine whether uploaded files are loaded into

directories that allow them to be interpreted as server-side

or client-side code.

Perform dynamic testing

for clickjacking

Attempt to find pages that can be rendered in an iframe to

trick users into performing actions.

Conduct dynamic testing

for information

disclosure

Attempt to find responses that contain overly verbose

information about the system under review.

Perform dynamic testing

for memory management

vulnerabilities

Attempt to identify user-supplied inputs that are unsafely

loaded into memory or that unsafely reference existing

memory.

 2023/07/24 35

TEST CASE DESCRIPTION

Perform dynamic testing

for authentication

requirements

Evaluate the strength of the password requirements used for

password-based logins and determine whether multi-factor

authentication is used for sensitive logins.

Perform dynamic testing

for session lifecycle

issues

Evaluate sessions used by the system to ensure common

issues are not present.

Conduct dynamic testing

for user enumeration

Attempt to find places to disclose users registered in an

application.

Perform forward tracing

of security critical

functionality in source

code

Identify and analyze areas of critical functionality in code.

Find and target system-specific goals and areas of high

security relevance. Perform manual analysis of the security

controls around these areas to ensure adherence to overall

security goals.

Perform dynamic testing

for object deserialization

issues

Identify whether user-supplied inputs are used as serialized

objects and sent to an unsafe deserialization routine.

Conduct dynamic testing

for known vulnerabilities

Attempt to find known vulnerabilities in components used by

the application.

Perform software

composition analysis

against system

dependencies

Perform automated software composition analysis and

checking of dependencies against public vulnerability lists.

Investigate all findings to determine practical impact against

the target system based on the usage and conditions

necessary for exploitability.

Complete automated

static code analysis of

relevant codebases

Perform automated static code analysis for all codebases

that are not open source. Manually investigate all findings

for true positives and assess specific system risks.

Conduct dynamic testing

for cross-origin resource

sharing (CORS) issues

Attempt to find a CORS configuration that allows malicious

sites to access the application on behalf of the user.

Perform dynamic testing

for cross-site request

forgery (CSRF)

Attempt to find form submission functionality that fails to

verify the source of the submission for a state-changing

action.

 2023/07/24 36

TEST CASE DESCRIPTION

Perform dynamic testing

for cross-site scripting

(XSS) in client-side

frameworks

Determine whether insecure functions are used to write

user-provided content to the page within client-side

frameworks.

Perform dynamic testing

for XSS

Attempt to find user-supplied payloads that execute client-

side code on other users’ browsers.

Perform dynamic testing

for lesser-known same-

origin policy bypasses

Attempt to find the insecure use of Flash across origins and

the insecure use of JSONP.

Conduct dynamic testing

for WebSocket hijacking

Attempt to find WebSockets that fail to verify that the

WebSocket originated from the site itself.

Conduct dynamic testing

for unsafe postMessage

or event handler use

Determine whether the postMessage API is in use or

whether event handling allows messages from unintended

sources.

Conduct dynamic testing

for SQL injection

Attempt to edit the contents of a SQL query by inserting

special characters inside user-provided parameters that are

used to construct the query.

Perform dynamic testing

for server-side request

forgery (SSRF)

Attempt to manipulate some or all of the URLs in use by the

system.

Perform dynamic testing

for server-side template

injection

Attempt to specify server-side template code that is

evaluated by a template engine in order to execute arbitrary

code on the affected system.

Perform SSO testing for

SAML, OAuth 2.0, and

common integration

problems

Attempt to modify responses or exploit implementation

failures to obtain unintended access or privilege escalation

through SSO environments.

Conduct dynamic testing

for XML external entities

(XXE)

Attempt to find misconfigured XML parsers that allow the

interpretation of XXE.

